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115 19 Prague 1, Czech Republic

E-mail: grundlan@crm.umontreal.ca, hariton@crm.umontreal.ca and Libor.Snobl@fjfi.cvut.cz

Received 19 December 2008, in final form 23 June 2009
Published 28 July 2009
Online at stacks.iop.org/JPhysA/42/335203

Abstract
A comprehensive symmetry analysis of the N = 1 supersymmetric sine-
Gordon equation is performed. Two different forms of the supersymmetric
system are considered. We begin by studying a system of partial differential
equations corresponding to the coefficients of the various powers of the
anticommuting independent variables. Next, we consider the super-sine-
Gordon equation expressed in terms of a bosonic superfield involving
anticommuting independent variables. In each case, a Lie (super)algebra of
symmetries is determined and a classification of all subgroups having generic
orbits of codimension 1 in the space of independent variables is performed.
The method of symmetry reduction is systematically applied in order to derive
invariant solutions of the supersymmetric model. Several types of algebraic,
hyperbolic and doubly periodic solutions are obtained in explicit form.

PACS numbers: 02.20.Sv, 12.60.Jv, 02.30.Jr

1. Introduction

The purpose of this paper is to obtain Lie point symmetries and group-invariant solutions
of the minimal (N = 1) supersymmetric extension of the (1 + 1)-dimensional sine-Gordon
equation:

ϕxt = sinϕ. (1)

The symmetry reduction method (SRM) is systematically applied in order to derive invariant
solutions of the N = 1 supersymmetric extension of the model (1).
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The classical sine-Gordon equation (1) has applications in various areas of physics
including, among others, nonlinear field theory, solid-state physics (evolution of magnetic flux
in Josephson junctions, Bloch wall motion of magnetic crystals, etc), nonlinear optics (self–
induced transparency, fiber optics), elementary particle theory and fluid dynamics; see [1–6]
and references therein. A broad review of recent developments in the theory involved as well
as their applications can be found for example in [2, 6–8] and bibliographies therein. The sine-
Gordon equation (1) also has great significance in mathematics, especially in the soliton theory
of surfaces. Analytic nonpertubative techniques for solving equation (1) exist, including,
among others, the inverse scattering method and the Darboux–Bäcklund transformations.
Multiple soliton solutions of (1) have found a wide variety of applications. The Bäcklund
transformation for the sine-Gordon equation (1) linking different analytic descriptions of
constant negative curvature surfaces in R

3 was established a century ago by Bianchi [9] and
then by Steuerwald [10]. They were the first to find solutions of the structural equations
(i.e. the Gauss–Weingarten and the Gauss–Codazzi–Mainardi equations). In particular, they
constructed pseudospherical surfaces for the sine-Gordon equation (1) by means of the auto-
Bäcklund transformation. It was demonstrated [11] that these surfaces can be described either
by the Monge–Ampère equation

uxxuyy − u2
xy + (1 + (ux)

2 + (uy)
2)2 = 0 (2)

(where z = u(x, y) is the graph of a surface in R
3) or by the sine-Gordon equation (1) for

the angle ϕ(x, t) between asymptotic directions. The surfaces associated with equations (1)
and (2) are characterized by the Gaussian curvature K = −1. The explicit form of the
correspondence between these two integrable models is known [11].

In recent publications (see e.g. [12–17]), a superspace extension of the Lagrangian
formulation has been established for the supersymmetric sine-Gordon (SSG) equation. The
associated linear spectral problem was thoroughly discussed by many authors (see e.g.
[13, 17] and references therein). It was shown [15] that the equation of motion appears as
the compatibility condition of a set of Riccati equations. The supersymmetric sine-Gordon
equation admits an infinite number of conservation laws, and a connection was established
[15, 16] between its super-Bäcklund and super-Darboux transformations. Consequently, it was
shown in [16] that the Darboux transformation is related to the super-Bäcklund transformation,
and the latter was used to construct multi-super soliton solutions. The SSG equation was shown
to be equivalent to the super CP 1 sigma model [18, 19]. The prolongation method of Wahlquist
and Estabrook was used to find an infinite-dimensional superalgebra and the associated super
Lax pairs [20].

In physics, the supersymmetric sine-Gordon equation is a useful example of a nonlinear
integrable supersymmetric theory, on which conjectures concerning the properties of such
theories can be tested. These involve, among others, the computations of the S-matrix
[21, 22]. In addition, N = 2 supersymmetric sine-Gordon models arise in certain reductions
of superstring worldsheet theories on particular backgrounds, e.g. the Pohlmeyer reduction on
AdS2 × S2 [23].

The purpose of this paper is to study the symmetry properties of the supersymmetric
sine-Gordon system (more precisely, of the equations of motion of the N = 1 supersymmetric
sine-Gordon model) and to construct various classes of invariant solutions of this model. In
order to accomplish this, we use a generalized version of the prolongation method which
encompasses commuting and anticommuting variables. The total derivatives with respect to
these variables are adapted in such a way that they are consistent with the standard definitions.
We then use a generalized version of the SRM in order to obtain group-invariant solutions of
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the supersymmetric sine-Gordon model. These solutions complement the multi-super soliton
solutions found recently.

This paper is organized as follows. In section 2, we recall the supersymmetric sine-Gordon
equation, constructed in such a way that it is invariant under two independent supersymmetry
transformations. In section 3, we decompose the supersymmetric sine-Gordon equation into
three partial differential equations involving the component fields of the superfield and proceed
to determine a Lie symmetry algebra of this system. Next, we focus on the SSG equation
expressed explicitly in terms of the odd superspace variables θ1 and θ2 and the bosonic
superfield �. In section 4, we compute in detail the Lie superalgebra of symmetries of this
equation using a generalized version of the prolongation method. The subalgebra classification
of this superalgebra is performed in section 5, and a discussion of the invariant solutions of
the SSG equation is the subject of section 6. Finally, in section 7, we provide a summary of
the results and list some possible future developments.

2. Supersymmetric extension

We are interested in the supersymmetric sine-Gordon equation [14–16] constructed on the four-
dimensional superspace {(x, t, θ1, θ2)}. Here, x and t represent the even (bosonic) coordinates
on the two-dimensional super-Minkowski space R

(1,1|2), while the quantities θ1 and θ2 are
anticommuting odd coordinates.

We replace the real-valued function ϕ(x, t) in equation (1) by the real scalar bosonic
superfield �(x, t, θ1, θ2). Such a superfield can be decomposed into its component fields as

�(x, t, θ1, θ2) = 1
2u(x, t) + θ1φ(x, t) + θ2ψ(x, t) + θ1θ2F(x, t), (3)

where φ and ψ are the odd-valued functions (fields) and u and F are the even-valued functions
(fields). The supersymmetric extension of equation (1) is constructed in such a way that it is
invariant under the two independent supersymmetry transformations:

x → x − η
1
θ1, θ1 → θ1 + η

1
and t → t − η

2
θ2, θ2 → θ2 + η

2
, (4)

where η1 and η2 are the odd parameters (in general, we use the convention that underlined
letters represent odd parameters). These transformations are generated by the infinitesimal
supersymmetry generators:

Qx = ∂θ1 − θ1∂x and Qt = ∂θ2 − θ2∂t , (5)

which satisfy the anticommutation relations

{Qx,Qx} = −2∂x, {Qt,Qt } = −2∂t , {Qx,Qt } = 0. (6)

In order to make our superfield theory invariant under the actions Qx and Qt , we write the
equation in terms of the covariant derivatives

Dx = ∂θ1 + θ1∂x and Dt = ∂θ2 + θ2∂t , (7)

which possess the property that they square to the generators of spacetime translations and
anticommute with the supersymmetry generators:

D2
x = ∂x, D2

t = ∂t , {Dx,Dt } = {Dx,Qx} = {Dx,Qt }
= {Dt,Qx} = {Dt,Qt } = 0. (8)

The superspace Lagrangian density of the supersymmetric model is

L(�) = 1
2Dx�Dt�− cos�, (9)

3
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and the corresponding Euler–Lagrange superfield equation is given by

DxDt� = sin�. (10)

Equation (10) is invariant under the supersymmetry transformations (4), and we therefore refer
to it as the supersymmetric sine-Gordon (SSG) equation. Once it is expanded out in terms
of the component fields 1

2u(x, t), φ(x, t), ψ(x, t), F (x, t), one finds that the scalar part of
equation (10) is in fact algebraic and restricts F to be the following function of u [14]:

F = −sin
(u

2

)
. (11)

Up to this point, the presentation has been formulated in the language usually used in
physics, not yet mathematically well defined. The mathematically sound formulation is based
on the notion of supermanifolds in the sense of [24, 25] and can be described as follows.

One starts by considering a real Grassmann algebra 	 generated by a finite or infinite
number of generators (ξ1, ξ2, . . .). The number of Grassmann generators of 	 is not directly
relevant for applications; essentially the only assumption is that ‘there are at least as many
independent ones as are needed in any formula encountered’. The Grassmann algebra 	 has
a naturally defined parity 1̃ = 0, ξ̃i = 1, (̃ab) = ãb̃ and can be split into even and odd parts:

	 = 	even + 	odd. (12)

The spaces 	 and 	even replace the field of real numbers in the context of supersymmetry.
Elements of 	 are called supernumbers, while elements of its even/odd part are even/odd
supernumbers. For instance, in equation (4) we have parameters η1, η2 ∈ 	odd. Sometimes
we may also employ a different split:

	 = 	body + 	soul (13)

where 	body = ∧0[ξ1, ξ2, . . .] � R and 	soul = ∑
k�1 ∧k[ξ1, ξ2, . . .]. The bodiless elements

in 	soul are obviously non-invertible because of the Z
+
0-grading of the Grassmann algebra. If

the number of Grassmann generators K is finite, bodiless elements are nilpotent of degree at
most K. In what follows, we shall assume that K is arbitrarily large but finite—this assumption
will allow us to use rigorous theorems of [26].

Next, one considers a Z2-graded real vector space V , with even basis elements
ui, i = 1, . . . , N, and odd basis elements υμ,μ = 1, . . . ,M, and constructs W = 	 ⊗R V .
The space of interest to us is its even part:

Weven =
{∑

i

aiui +
∑
μ

αμυμ|ai ∈ 	even, αμ ∈ 	odd

}
.

Obviously, Weven is a 	even module and can be identified with 	×N
even × 	×M

odd . To the original
basis consisting of ui and υμ (although υμ �∈ Weven !), we associate the corresponding
functionals

Ej : Weven → 	even : Ej

(∑
i

aivi +
∑
μ

αμυμ

)
= aj ,

ϒν : Weven → 	odd : ϒν

(∑
i

aivi +
∑
μ

αμυμ

)
= αν

and view them as the coordinates (even and odd, respectively) onWeven. Any topological space
locally diffeomorphic to a suitable Weven is called a supermanifold. The transition functions
to even and odd coordinates between different charts on supermanifold are assumed to be
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even- and odd-valued superanalytic or at least G∞ functions on Weven. For comprehensive
definitions of the classes of ‘supersmooth’ functions G∞ and superanalytic functions Gω,
we refer the reader to consult e.g. [24], definition 2.5—here we only note that superanalytic
functions are those that can be expanded into convergent power series in even and odd
coordinates, whereas the definition of the G∞ function is a more involved analog on
supermanifold of C∞ functions on manifolds. Any G∞ function can be expanded into
products of odd coordinates (i.e. Taylor-like expansion) but the coefficients, being functions
of even coordinates, may not necessarily be analytic.

In our context, the super-Minkowski space R
(1,1|2) should be understood as such a

supermanifold, globally diffeomorphic to 	×2
even × 	×2

odd with even coordinates x, t and odd
coordinates θ1, θ2. The supersymmetry transformation (4) can be viewed as a particular change
of coordinates on R

(1,1|2) which transforms solutions of equation (10) into solutions of the
same equation in new coordinates.

A bosonic, also called even, superfield is a G∞ function � : R
(1,1|2) → 	even. It can be

expanded in powers of odd coordinates θ1, θ2 giving decomposition (3), with

u, F : 	×2
even → 	even,

φ, ψ : 	×2
even → 	odd.

The partial derivatives with respect to the odd coordinate (for a detailed description see
[24], definitions 2.5 and 5.6) satisfy the usual operational rules, namely ∂θi θj = δij , together
with the graded product rule:

∂θi (fg) = (∂θi f )g + (−1)f̃ (∂θi g). (14)

The operations ∂θi ,Qx,t , Dx,t in equations (5) and (7) switch the parity of the function acted
on. For instance, ∂θ1� becomes an odd superfield ∂θ1� : R

(1,1|2) → 	odd whose component
decomposition is

∂θ1�(x, t, θ1, θ2) = φ(x, t) + θ2F(x, t).

3. Lie symmetry properties of the supersymmetric sine-Gordon system
in component form

When decomposed in terms of the various powers of θ1 and θ2, the SSG equation (10) is seen
to be equivalent to a system of three partial differential equations for the fields u, φ and ψ .
That is, the coefficients of the powers θ1, θ2 and θ1θ2 combine to form the following system
of coupled equations for the component fields [14]:

(i) uxt = −sin u + 2φψ sin
(u

2

)
,

(ii) φt = −ψ cos
(u

2

)
,

(iii) ψx = φ cos
(u

2

)
.

(15)

In order to determine the Lie point symmetry algebra g of the system (15), we restrict our
consideration to Lie groups and use an infinitesimal approach. We adapt the method of
prolongation of vector fields described in the book by Olver [27] to the case where the
equations of the system contain both even- and odd-valued functions [28, 29]. We begin by
writing the set of partial differential equations (15) in the form

�k(x, t, u, φ,ψ, uxt , φt , ψx) = 0, k = 1, 2, 3, (16)

5
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where

�1(x, t, u, φ,ψ, uxt , φt , ψx) = uxt + sinu− 2φψ sin
(u

2

)
,

�2(x, t, u, φ,ψ, uxt , φt , ψx) = φt + ψ cos
(u

2

)
,

�3(x, t, u, φ,ψ, uxt , φt , ψx) = ψx − φ cos
(u

2

)
.

(17)

A symmetry group G of the system (16) is a (local) group of transformations acting on
the cartesian product of supermanifolds:

X × U

with even coordinates (x, t, u) and odd coordinates (φ,ψ), whose associated action on the
functions u(x, t),�(x, t), ψ(x, t) maps solutions of (16) to solutions of (16). Assuming that
G is a super Lie group in the sense of [26], one can associate with it its Lie algebra of even
left-invariant vector fields G, whose elements are the infinitesimal symmetries of the system
(16). In particular, a local one-parameter subgroup of G consists of a family of transformations

gε : x̃i = Xi(x, u, ε), ũα = Uα(x, u, ε), (18)

where x = (x1, x2) = (x, t) are the independent variables and u = (u1, u2, u3) = (u, φ,ψ)

are the dependent ones. ε ∈ 	even is a group parameter whose range may be restricted
depending on the values of x, t, u, φ,ψ . Such a local subgroup is generated by a vector field
of the form

v = ξ i(x, u)
∂

∂xi
+ �(x, u)α

∂

∂uα
, (19)

where

ξ i(x, u) = ∂

∂ε
Xi

∣∣∣∣
ε=0

, �α(x, u) = ∂

∂ε
Uα

∣∣∣∣
ε=0

. (20)

The advantage of working with the Lie algebra g instead of directly with the super Lie group
G is that the equations defining the infinitesimal symmetries are linear.

In order to determine the infinitesimal symmetries of a system of partial differential
equations, it is useful to make use of the concept of the prolongation of a group action. The
idea is that a transformation of coordinates xi → x̃i , uα → ũα induces a transformation of
the derivatives:

∂uα

∂xi
−→ ∂ũα

∂x̃i
. (21)

In order to make use of this concept, we define the multi-index J = (j1, . . . , jp), where
ji = 0, 1, . . . and |J | = j1 + · · · + jp. The space of coordinates on X × U is extended to the
jet bundle

Jk = {(
xi, uα, uαJ

)||J | � k
}
, (22)

which includes the coordinates and all derivatives of the dependent variables of order less than
or equal to k. In our setting the jet bundle (22) is a supermanifold on which we define total
derivatives

Di = ∂

∂xi
+

∑
α,J

uαJi
∂

∂uαJ
(23)

where Ji = (j1, . . . , ji−1, ji + 1, ji+1, . . . , jn). More generally, for J = (j1, j2, . . . , jn), we
define

DJ = D1D1 · · ·D1︸ ︷︷ ︸
j1

· · ·DnDn · · ·Dn︸ ︷︷ ︸
jn

. (24)

6
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The prolongation of a group action to the jet bundle Jk in turn induces a prolongation of
the generating infinitesimal vector field in the Lie algebra. For the vector field v given by (19),
the kth-order prolongation of v is

pr(k)(v) = v +
∑

α,|J |�=0

φαJ (x, u
(k))

∂

∂uαJ
, (25)

where φαJ (x, u
(k)) are given by the formula

φαJ = DJ

(
φα − ξ i

∂uα

∂xi

)
+ ξ iuαJi (26)

or, equivalently, by the recursive formula

φαJj = Djφ
α
J −

∑
i

(Dj ξ
i)uαJi . (27)

The symmetry criterion (theorem 2.31 in [27]) assumes that G is a connected Lie group
of transformations acting locally on X × U through the transformations

x̃i = Xi(x, u, g), ũα = Uα(x, u, g),

where g ∈ G and �ν(x, u
(n)) is a non-degenerate system of partial differential equations

(meaning that the system is locally solvable with respect to highest derivatives and is of
maximal rank at every point

(
x0, u

(n)
0

) ∈ X×U(n)). Then G is a symmetry group of � = 0 if
and only if

[pr(k)(v)](�) = 0 whenever � = 0 (28)

for each infinitesimal generator v of G.
Using the results of [26], one finds that the same criterion can be used also in the case of

the super Lie group G and its Lie algebra of even left-invariant vector fields.
For the purpose of determining the Lie algebra of symmetries of the system (16), let us

write a vector field of the form

v = ξ(x, t, u, φ,ψ)∂x + τ(x, t, u, φ,ψ)∂t + U(x, t, u, φ,ψ)∂u
+�(x, t, u, φ,ψ)∂φ + �(x, t, u, φ,ψ)∂ψ, (29)

where ξ, τ and U are the 	even-valued functions while � and � are the 	odd-valued so that v
is an even vector field. We consider a second prolongation of the vector field (29) which is of
the form

pr(2)(v) = v + Uxt ∂uxt + �t∂φt + �x∂ψx
+ (Ux∂ux + U t ∂ut + · · ·), (30)

where the terms in the parentheses do not contribute in what follows, namely in equation (33).
The coefficients Uxt , �t and �x are the known functions of the components ξ, . . . , � of the
vector field v and their derivatives with respect to the independent and dependent variables
x, . . . , ψ (as given by the general prolongation formula (26) or (27)). We use upper indices in
coefficients Uxt , �t , etc in order to distinguish them from partial derivatives, e.g. Uxt = ∂t∂xU .
The first-order coefficients are given by

�t = �t + �uut + �φφt + �ψψt − ξtφx − ξuutφx − ξφφxφt

− ξψφxψt − τtφt − τuutφt − τψφtψt , (31)

and

�x = �x + �uux + �φφx + �ψψx − ξxψx − ξuuxψx + ξφφxψx

− τxψt − τuuxψt + τφφxψt + τψψxψt . (32)

7
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The second-order coefficient, Uxt , is much involved and will not be presented here.
According to the symmetry criterion, the vector field (29) is an infinitesimal generator of

the symmetry group of the system of differential equations (16) if and only if

pr(2)(v)[�k(x, t, u, φ,ψ, uxt , φt , ψx)] = 0, k = 1, 2, 3, (33)

whenever �l(x, t, u, φ,ψ, uxt , φt , ψx) = 0, l = 1, 2, 3.
The condition pr(2)(v)[�k] = 0, when applied to the system (15), leads to the following

conditions on the coefficients:

(i) Uxt = U
(
−cos u + cos

(u
2

)
φψ

)
+ �

(
2 sin

(u
2

)
ψ

)
+ �

(
−2 sin

(u
2

)
φ
)
,

(ii) �t = 1

2
U sin

(u
2

)
ψ −� cos

(u
2

)
,

(iii) �x = −1

2
U sin

(u
2

)
φ + � cos

(u
2

)
,

(34)

whenever u, φ,ψ satisfy the system (15).
Substituting the prolongation formulas for Uxt , �t and �x into (34) and imposing the

condition that �k = 0, k = 1, 2, 3, i.e. substituting for uxt , φt , ψx and their derivatives, we
equate the coefficients of the various monomials in the various remaining derivatives of u, φ
and ψ with respect to x and t (i.e. those unconstrained by equation (15)). We obtain a series of
determining equations which impose restrictions on the coefficients ξ, τ,U, � and � of the
vector field (29). Solving the determining equations, we see that the coefficients must be

ξ(x) = C1x + C2, τ (t) = −C1t + C3, U = 0,

�(φ) = − 1
2C1φ, �(ψ) = 1

2C1ψ,
(35)

where C1, C2 and C3 are arbitrary even parameters. Thus, we have determined that the Lie
algebra g is spanned by the following three vector fields:

Px = ∂x, Pt = ∂t , D = 2x∂x − 2t∂t − φ∂φ + ψ∂ψ, (36)

where ∂x = ∂/∂x, etc. We have two translations, Px and Pt , in the x and t directions
respectively, and the dilation D acting on the independent and dependent variables. We note
that although the method may in general yield a super Lie algebra (for explicit examples see
e.g. [30–32]), in our particular case of the supersymmetric sine-Gordon system (15) the result
is just a Lie algebra acting on the supermanifold X × U . In fact, the Lie algebra in question
whose nonzero commutation relations are

[Px,D] = 2Px, [Pt ,D] = −2Pt (37)

is ISO(1, 1), which is also the symmetry Lie algebra of the ordinary sine-Gordon equation
(in (1 + 1)-dimensional Minkowski space described in the light-cone coordinates, the Lorentz
boost takes the form of a dilation). This represents the Poincaré invariance of the sine-Gordon
equation, supersymmetric or otherwise. This algebra is also identified as A3,4 (E(1, 1)) in
[33] where its non-conjugate one-dimensional subalgebras are found to be

L1 = {D}, L2 = {Px}, L3 = {Pt }, L4 = {Px + Pt }, L5 = {Px − Pt }.
(38)

One can now proceed to apply the SRM in order to obtain invariant solutions of the
supersymmetric system (15). First, we find for each of the subalgebras listed in (38)
the associated four invariants along with the appropriate change of variable that has to be
substituted into thesystem (15) in order to obtain the set of reduced ordinary differential
equations. In each case, the invariant involving only the independent variables, the so-called

8
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Table 1. Invariants and change of variables for subalgebras of the Lie algebra g spanned by the
vector fields (36).

Subalgebra Invariants Relations and change of variable

L1 = {D} σ = xt, u, t−1/2φ, t1/2ψ u = u(σ), φ = t1/2Θ(σ),ψ = t−1/2�(σ)

L2 = {Px} σ = t, u, φ,ψ u = u(t), φ = φ(t), ψ = ψ(t)

L3 = {Pt } σ = x, u, φ,ψ u = u(x), φ = φ(x), ψ = ψ(x)

L4 = {Px + Pt } σ = x − t, u, φ,ψ u = u(σ), φ = φ(σ), ψ = ψ(σ)

L5 = {Px − Pt } σ = x + t, u, φ, ψ u = u(σ), φ = φ(σ), ψ = ψ(σ)

Table 2. Reduced equations obtained for subalgebras of the Lie algebra g spanned by the vector
fields (36).

Subalgebra Reduced equations

L1 = {D} σuσσ + uσ = −sin u + 2 sin
(
u

2

)
Θ�, 1

2Θ + σΘσ = −cos
(
u

2

)
�,

�σ = cos
(
u

2

)
Θ

L2 = {Px} −sinu + 2 sin
(
u

2

)
φψ = 0, φt = −cos

(
u

2

)
ψ, cos

(
u

2

)
φ = 0

L3 = {Pt } −sinu + 2 sin
(
u

2

)
φψ = 0, cos

(
u

2

)
ψ = 0, ψx = cos

(
u

2

)
φ

L4 = {Px + Pt } −uσσ = −sinu + 2 sin
(
u

2

)
φψ, φσ = cos

(
u

2

)
ψ, ψσ = cos

(
u

2

)
φ

L5 = {Px − Pt } uσσ = −sinu + 2 sin
(
u

2

)
φψ, φσ = −cos

(
u

2

)
ψ, ψσ = cos

(
u

2

)
φ

symmetry variable, is labeled by the symbol σ . The invariants and the change of variables
are listed in table 1, while the systems of reduced ordinary differential equations are listed in
table 2. Because the reduced ODE systems in table 2 form a subset of cases investigated in
section 6, we postpone their discussion there.

4. Symmetries of the SSG equation

When we performed the group-theoretical analysis of the supersymmetric sine-Gordon system
in the component form (15), we noted that the resulting symmetry algebra did not essentially
differ from the purely bosonic case, i.e. equation (1). That is, the supersymmetry algebra was
not recovered in this way. In order to overcome this shortcoming of the method, we now turn
our attention to the superfield version of the model represented by the SSG equation (10). This
equation can be rewritten in the form

θ1θ2�xt − θ2�tθ1 + θ1�xθ2 −�θ1θ2 = sin�, (39)

where each successive subscript (from left to right) indicates a successive partial derivative (for
example,�θ1θ2 represents ∂θ2(∂θ1�)). In order to determine the Lie superalgebra of symmetries
of equation (39), we employ the generalized method of prolongations so as to include also the
two independent odd variables θ1 and θ2. Such procedure was proposed and used in [34, 35].

We consider transformations on the supermanifold

R
(1,1|2) ×	even.

We write a generator of symmetry transformation in the form of an even vector field on this
manifold:

v = ξ(x, t, θ1, θ2,�)∂x + τ(x, t, θ1, θ2,�)∂t + ρ(x, t, θ1, θ2,�)∂θ1

+ σ(x, t, θ1, θ2,�)∂θ2 + �(x, t, θ1, θ2,�)∂�, (40)

9
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where ξ, τ and � are supposed to be even, i.e. 	even-valued functions, while ρ and σ are
odd, i.e. 	odd valued. Here, we adopt the ordering convention that the odd coefficients in the
expression (in this case ρ and σ ) precede the odd derivatives (∂θ1 and ∂θ2 respectively). We
generalize the total derivatives Dx,Dt ,Dθ1 and Dθ2 as

Dx = ∂x + �x∂� + �xx∂�x
+ �xt∂�t

+ �xθ1∂�θ1
+ �xθ2∂�θ2

+ �xxx∂�xx
+ �xxt∂�xt

+�xxθ1∂�xθ1
+ �xxθ2∂�xθ2

+ �xtt ∂�tt
+ �xtθ1∂�tθ1

+ �xtθ2∂�tθ2
+ �xθ1θ2∂�θ1θ2

,

(41)

and

Dθ1 = ∂θ1 + �θ1∂� + �xθ1∂�x
+ �tθ1∂�t

+ �θ2θ1∂�θ2
+ �xxθ1∂�xx

+ �xtθ1∂�xt

+�xθ2θ1∂�xθ2
+ �ttθ1∂�tt

+ �tθ2θ1∂�tθ2
, (42)

while Dt and Dθ2 are defined in analogy with Dx and Dθ1 respectively. Here, we note that the
chain rule for an odd-valued function f (g(x)) is [36, 37]

∂f

∂x
= ∂g

∂x
· ∂f
∂g

. (43)

The graded interchangeability of mixed derivatives (i.e. with proper respect to the ordering of
odd variables) of course holds. The second prolongation of the vector field (40) is given by

pr(2)v = ξ∂x + τ∂t + ρ∂θ1 + σ∂θ2 + �∂� + �x∂�x
+ �t∂�t

+ �θ1∂�θ1
+ �θ2∂�θ2

+�xx∂�xx
+ �xt∂�xt

+ �xθ1∂�xθ1
+ �xθ2∂�xθ2

+ �tt∂�tt
+ �tθ1∂�tθ1

+�tθ2∂�tθ2
+ �θ1θ2∂�θ1θ2

. (44)

Applying the second prolongation (44) to equation (39), we obtain the following condition:

ρ(θ2�xt + �xθ2)− σ(θ1�xt + �tθ1)−�(cos�) + �xt(θ1θ2)

+�tθ1(θ2)−�xθ2(θ1)−�θ1θ2 = 0. (45)

Note that proper respect to the ordering of odd terms is essential, e.g. �tθ1 is odd. We see
that we only need to calculate the coefficients �x,�t ,�θ1 ,�θ2 ,�xt ,�tθ1 ,�xθ2 and �θ1θ2 in
equation (44). They are found from the superspace version of the formulas for the first and
second prolongations of vector fields (see equation (27)):

�A = DA�−
∑
B

DAζ
B�B, �AB = DB�

A −
∑
C

DBζ
C�AC, (46)

where

A,B,C ∈ {x, t, θ1, θ2}, ζA = (ξ, τ, ρ, σ ). (47)

The derivation of these formulas is performed in the same way as in the bosonic case, working
with infinitesimal transformations and keeping track of ordering properties. Explicitly, the
coefficients are given as follows:

�x = �x + ���x − ξx�x − ξ�(�x)
2 − τx�t − τ��x�t − ρx�θ1

− ρ��x�θ1 − σx�θ2 − σ��x�θ2 ,

�t = �t + ���t − ξt�x − ξ��x�t − τt�t − τ�(�t)
2 − ρt�θ1

− ρ��t�θ1 − σt�θ2 − σ��t�θ2 ,

�θ1 = �θ1 + ���θ1 − ξθ1�x − ξ��x�θ1 − τθ1�t − τ��t�θ1

− ρθ1�θ1 − σθ1�θ2 + σ��θ1�θ2 ,

10
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�θ2 = �θ2 + ���θ2 − ξθ2�x − ξ��x�θ2 − τθ2�t − τ��t�θ2 − ρθ2�θ1

− ρ��θ1�θ2 − σθ2�θ2 ,

�xt = �xt + �x��t + �t��x + ����x�t + ���xt − ξxt�x − ξx��x�t − ξx�xt

− ξt�(�x)
2 − ξ��(�x)

2�t − 2ξ��x�xt − ξt�xx − ξ��t�xx − τxt�t

− τt��x�t − τt�xt − τx�(�t)
2 − τ��(�t)

2�x − 2τ��t�xt − τx�tt

− τ��x�tt − ρxt�θ1 − ρx��t�θ1 − ρt��x�θ1 − ρx�tθ1 − ρt�xθ1

− ρ���x�t�θ1 − ρ��xt�θ1 − ρ��tθ1�x − ρ��xθ1�t − σxt�θ2

− σx��t�θ2 − σt��x�θ2 − σx�tθ2 − σt�xθ2 − σ���x�t�θ2 − σ��xt�θ2

− σ��tθ2�x − σ��xθ2�t,

�tθ1 = �tθ1 + �t��θ1 + �θ1��t + ����t�θ1 + ���tθ1 − ξtθ1�x − ξt��x�θ1 − ξt�xθ1

− ξθ1��x�t − ξ���x�t�θ1 − ξ��t�xθ1 − ξ��x�tθ1 − ξθ1�xt − ξ��xt�θ1

− τtθ1�t − τt��t�θ1 − τt�tθ1 − τθ1�(�t)
2 − τ��(�t)

2�θ1 − 2τ��t�tθ1

− τθ1�tt − τ��tt�θ1 − ρtθ1�θ1 − ρθ1��t�θ1 − ρθ1�tθ1 − σtθ1�θ2

+ σt��θ1�θ2 − σt�θ1θ2 − σθ1��t�θ2 + σ���t�θ1�θ2 + σ��tθ1�θ2

− σ��t�θ1θ2 − σθ1�tθ2 + σ��θ1�tθ2 ,

�xθ2 = �xθ2 + �x��θ2 + �θ2��x + ����x�θ2 + ���xθ2 − ξxθ2�x − ξx��x�θ2

− ξx�xθ2 − ξθ2�(�x)
2 − ξ��(�x)

2�θ2 − 2ξ��x�xθ2 − ξθ2�xx − ξ��xx�θ2

− τxθ2�t − τx��t�θ2 − τx�tθ2 − τθ2��x�t − τ���x�t�θ2 − τ��x�tθ2

− τ��t�xθ2 − τθ2�xt − τ��xt�θ2 − ρxθ2�θ1 + ρx��θ2�θ1 + ρx�θ1θ2

− ρθ2��x�θ1 + ρ���x�θ2�θ1 + ρ��xθ2�θ1 + ρ��x�θ1θ2 − ρθ2�xθ1

+ ρ��θ2�xθ1 − σxθ2�θ2 − σθ2��x�θ2 − σθ2�xθ2 ,

�θ1θ2 = �θ1θ2 −�θ1��θ2 + �θ2��θ1 −����θ1�θ2 + ���θ1θ2 − ξθ1θ2�x + ξθ1��x�θ2

+ ξθ1�xθ2 − ξθ2��x�θ1 + ξ���x�θ1�θ2 + ξ��θ1�xθ2 − ξ��x�θ1θ2 − ξθ2�xθ1

− ξ��θ2�xθ1 − τθ1θ2�t + τθ1��t�θ2 + τθ1�tθ2 − τθ2��t�θ1 + τ���t�θ1�θ2

+ τ��θ1�tθ2 − τ��t�θ1θ2 − τθ2�tθ1 − τ��θ2�tθ1 − ρθ1θ2�θ1 + ρθ1��θ1�θ2

− ρθ1�θ1θ2 − σθ1θ2�θ2 + σθ2��θ1�θ2 − σθ2�θ1θ2 . (48)

Substituting the above formulas into equation (45) and replacing each term �θ1θ2 in the
resulting expression by the terms θ1θ2�xt − θ2�tθ1 + θ1�xθ2 − sin�, we obtain a series
of determining equations for the functions ξ, τ, ρ, σ and �. The general solution of these
determining equations is given by

ξ(x, θ1) = −2C1x + C2 −D1θ1, τ (t, θ2) = 2C1t + C3 −D2θ2,

ρ(θ1) = −C1θ1 + D1, σ (θ2) = C1θ2 + D2, � = 0,
(49)

where the parameters C1, C2, C3 ∈ 	even, while D1,D2 ∈ 	odd. Thus, the algebra of
infinitesimal transformations is the even part of the Lie superalgebra S over 	 spanned by the
following generators:

L = −2x∂x + 2t∂t − θ1∂θ1 + θ2∂θ2 , Px = ∂x, Pt = ∂t ,

Qx = −θ1∂x + ∂θ1 , Qt = −θ2∂t + ∂θ2 .
(50)
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Table 3. Supercommutation table for the Lie superalgebra S spanned by the vector fields (50).

L Px Pt Qx Qt

L 0 2Px −2Pt Qx −Qt

Px −2Px 0 0 0 0
Pt 2Pt 0 0 0 0
Qx −Qx 0 0 −2Px 0
Qt Qt 0 0 0 −2Pt

The even generators L,Px and Pt represent a dilation and translations in space and time
respectively, while the odd generatorsQx andQt are simply the generators of supersymmetric
transformations identified in section 2. This means that we have recovered the full super-
Poincaré algebra in (1 + 1) dimensions which was expected. The commutation (and
anticommutation in the case of two odd generators) relations of the Lie super algebra S

generated by the vector fields (50) are given in table 3.

5. One-dimensional subalgebras of the symmetry algebra of the SSG equation

In this section, we classify the one-dimensional subalgebras of the Lie algebra of infinitesimal
transformations Seven into conjugacy classes under the action of the super Lie group exp(Seven)

generated by Seven. Such a classification is of importance for us because conjugate subgroups
necessarily lead to invariant solutions equivalent in the sense that they can be transformed by
a suitable symmetry from one to the other; therefore, there is no need to compute reductions
with respect to algebras which are conjugate to each other. On the other hand, for our purposes
it is not of particular importance to establish exactly one representative of each class, as long
as the procedure of reduction has the same form for all the representatives, differing by a
choice of parameters only.

We recall why Seven is the algebra we are interested in. It would be inconsistent to
consider the R span of the generators (50) because we multiply the odd generators Qx and
Qt by the odd parameters η1 and η2 respectively in equation (4). Therefore, one is naturally
led to consideration of Seven which is a supermanifold in the sense presented in section 2.
It means that Seven contains sums of any even combination of Px, Pt , L (i.e. multiplied by
even parameters in 	even, including real numbers), and odd combination of Qx and Qt (i.e.
multiplied by odd parameters in 	odd). At the same time, Seven is a 	even Lie module.

This leads to the following complication.

• For a given X ∈ S, the subalgebras X,X′ spanned by X and by X′ = aX, a ∈ 	even\R

are in general not isomorphic, X′ ⊂ X.

It seems that the subalgebras obtained from other ones through multiplication by nilpotent
elements of 	even do not give us anything new for the purpose of symmetry reduction—they
may allow a bit more freedom in the choice of invariants, but we then encounter the problem
of non-standard invariants which we will discuss at the end of section 6.

Similarly, it does not appear to be particularly useful to consider a subalgebra of the
form e.g. {Px + η

1
η

2
Pt } (although the reduction for this case can easily be reconstructed by

substituting ε = η
1
η

2
in the subalgebra S4 and the corresponding formulas below).

Therefore, we will assume throughout the computation of the non-isomorphic one-
dimensional subalgebras that the nonzero even parameters are invertible, i.e. behave essentially
like ordinary real numbers.

12
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The Lie algebra Seven can be decomposed into the semi-direct sum:

S = {L} +⊃ {Px, Pt ,Qx,Qt }. (51)

In order to classify this Lie superalgebra, we make use of the techniques for semi-direct sums
of algebras described in [38] (section 4.4) and generalize them to superalgebras involving both
even and odd generators. Here, we identify the components F and N of the semi-direct sum as

F = {L}, N = {Px, Pt ,Qx,Qt }.
The trivial subalgebras of F are simply F1 = {0} and F2 = {L}. We begin by considering the
splitting one-dimensional subalgebras.

For F1 = {0}, all one-dimensional subspaces of the form

{αPx + βPt + μQx + νQt }, α, β ∈ 	even, μ, ν ∈ 	odd (52)

are invariant subalgebras, i.e. subalgebras of N invariant under the action of F1.
Under the action of the one-parameter group generated by the generator

Y = kL + mPx + nPt + ηQx + λQt, (53)

where k,m, n ∈ 	even and η, λ ∈ 	odd, the one-dimensional subalgebra (52) transforms under
the Baker–Campbell–Hausdorff formula

X −→ Adexp(Y )X = X + [Y,X] +
1

2!
[Y, [Y,X]] +

1

3!
[Y, [Y, [Y,X]]] + · · · (54)

to(
e2kα + 2ημ ek

(ek − 1)

k

)
Px +

(
e−2kβ + 2λν e−2k (e

k − 1)

k

)
Pt + ekμQx + e−kνQt . (55)

If k is bodiless (see equation (13)), then we interpret ek−1
k

as its well-defined limit
ek−1
k

= ∑∞
j=0

1
(j+1)!k

j .

We note that the action (54) with Y = kL on the even generators αPx +βPt together with
an overall rescaling of the subalgebra generator can always be used to bring one of the
coefficientsα, β to 1 under the assumption that at least one of them was invertible supernumber.
The other can be scaled to either ±1 or bodiless even supernumber. Note that here the
assumption of the finite number of Grassmann generators of 	 is essential—it guarantees a
cutoff in the sum ln(1 + γ ) = ∑

j�1
(−1)j−1

j
γ j for bodiless γ ∈ 	even so that one does not

have to worry about its convergence; i.e. k ∈ 	even such that ek = 1 + γ exists for every even
bodiless γ .

Once the coefficients Px, Pt are brought to the simple form, one uses any remaining
freedom to simplify the coefficients of Qx,Qt . As is seen from equation (55) not much
can be accomplished—only rescaling by exp(k), k ∈ 	even (and an overall rescaling if both
α = β = 0), may still be available.

Considering first the subalgebras containing only the generators Px, Pt , we obtain
essentially the same subalgebras as for the system in the component form described in
section 3.

(i) If β = 0, μ = 0, ν = 0, we have the subalgebra {Px} which is not conjugate to any other
subalgebra.

(ii) If α = 0, μ = 0, ν = 0, we have the subalgebra {Pt }.
(iii) The subalgebra {αPx + βPt }, where a, b ∈ 	even such that a−1 exists, can be brought to

the form

{Px + εPt }, (56)

13
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where ε = ±1 or ε is bodiless. If a is bodiless, then we get similarly

{Pt + ωPx},
where ω is bodiless. As mentioned at the beginning of this section, we shall consider only
subalgebra (56) with ε = ±1 in what follows.

Next we complement the generators Px, Pt by Qx,Qt . This leads to the following
types of non-conjugate subalgebra:

(iv) {μQx},
(v) {νQt },

(vi) {Px + μQx} where algebras with μ and ekμ, k ∈ 	even, are isomorphic,
(vii) {Pt + μQx} where algebras with μ and ekμ, k ∈ 	even, are isomorphic,

(viii) {Px + νQt } where algebras with ν and ekν, k ∈ 	even, are isomorphic,
(ix) {Pt + νQt } where algebras with ν and ekν, k ∈ 	even, are isomorphic,
(x) {Px + εPt + μQx},

(xi) {Px + εPt + νQt },
(xii) {μQx + νQt } where both μ and ν can be simultaneously rescaled by a ∈ 	even and then

one of them by ek, k ∈ 	even,
(xiii) {Px + μQx + νQt } where algebras defined by (μ, ν) and (ekμ, e3kν), k ∈ 	even, are

isomorphic,
(xiv) {Pt + μQx + νQt } where algebras defined by (μ, ν) and (e3kμ, ekν), k ∈ 	even, are

isomorphic,
(xv) {Px + εPt + μQx + νQt }.

For F2 = {L}, the only splitting one-dimensional subalgebra is {L} itself.

Next, we then look for non-splitting subalgebras of S of the form

V = {L + αPx + βPt + μQx + νQt }, (57)

but an easy calculation using the Baker–Campbell–Hausdorff formula (54) shows that all such
algebras are conjugate to {L}. Thus, there are no separate conjugacy classes of non-splitting
one-dimensional subalgebras of S.

Therefore, the one-dimensional subalgebra classification (under the restrictions mentioned
at the beginning of this section) is

S1 = {L}, S2 = {Px}, S3 = {Pt }, S4 = {Px + εPt }, S5 = {μQx},
S6 = {Px + μQx}, S7 = {Pt + μQx}, S8 = {Px + εPt + μQx},
S9 = {νQt }, S10 = {Px + νQt }, S11 = {Pt + νQt },
S12 = {Px + εPt + νQt }, S13 = {μQx + νQt }, S14 = {Px + μQx + νQt },
S15 = {Pt + μQx + νQt }, S16 = {Px + εPt + μQx + νQt }.

(58)

Any parameter, if present, is assumed to be nonvanishing. The underlined parameters belong
to 	odd, ε = ±1 (although also ε ∈ 	even bodiless can in principle be considered).

This classification will allow us to use the SRM in order to determine invariant solutions
of the SSG equation (39).

6. Invariant solutions of the supersymmetric sine-Gordon equation

We now proceed to apply a modified version of the SRM to the SSG equation (39) in order
to obtain invariant solutions of the model. Considering in turn each of the one-dimensional
subalgebras described in section 5, we begin by constructing, where possible, a set of four

14
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independent invariants of the specific subalgebra. In each case, the even invariant is labeled
by σ and the odd invariant(s) by τ (or τ1, τ2). For the subalgebras S5,S9,S13,S14,S15 and
S16, the structure of the invariants is non-standard and will be discussed at the end of this
section.

The bosonic superfield � is expanded in terms of its various odd invariants. The
dependence of� on each odd variable τi must be at most linear (as (τi)2 = 0). Substituting this
decomposition into the SSG equation (39), we obtain a reduced partial differential equation
for the superfield � which in turn leads to a system of differential constraints between its
component even and odd functions. For instance, if the invariants are given by σ, τ1, τ2,�,
the superfield � can be decomposed into the form

� = A(σ, τ1, τ2) = α(σ) + τ1η(σ ) + τ2λ(σ) + τ1τ2β(σ), (59)

where α and β are the even-valued functions of σ while η and λ are the odd-valued functions of
σ . Substitution into the SSG equation (39) allows us to determine the differential constraints
between the functions α, β, η and λ. In general, the reduced supersymmetric equation will
contain the term sinA which can be expanded in the form

sinA = sinα + τ1η cosα + τ2λ cosα + τ1τ2(β cosα + ηλ sinα), (60)

as identified from the series

sinA = A − 1

3!
A3 +

1

5!
A5 − · · · (61)

The results are summarized in tables 4 and 5. In table 4, we list the one-dimensional
subalgebras and their respective invariants and superfields. In table 5, we present the systems
of differential constraints resulting from each symmetry reduction and assumed form of the
superfield. In what follows, we deal separately with each case described above by performing
an analysis of the various solutions of the obtained differential constraints. The resulting
expressions are then substituted into the superfield formula for �, from which we obtain
group-invariant solutions.

The subalgebra S1 = {L} leads to the reduction

�(x, t, θ1, θ2) = α(σ) + t1/2θ1μ(σ) + t−1/2θ2ν(σ ) + θ1θ2β(σ), (62)

where σ = xt and the functions α, β, μ, ν satisfy

σασσ + ασ +
1

2
sin (2α)− C0σ

−1/2 sinα = 0,

νσσ + tanαασ νσ +
1

2σ
νσ +

1

σ
cos2 αν = 0,

μ− 1

cosα
νσ = 0,

β + sinα = 0,

(σ 1/2μν)σ = 0,

(63)

where C0 denotes the nilpotent even constant equal to σ 1/2μν. These equations are equivalent
to the ones listed in table 5 but written in the form more convenient for further simplification.
This reduction is also equivalent to that found for the SSG equation in the component form in
table 2.

We find it convenient to consider the first equation in (63), namely

σασσ + ασ + 1
2 sin(2α)− C0σ

−1/2 sinα = 0
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Table 4. Invariants and change of variables for subalgebras of the Lie superalgebra S spanned by
the vector fields (50).

Subalgebra Invariants Superfield

S1 = {L} σ = xt, τ1 = t1/2θ1, � = A(σ, τ1, τ2) = α(σ) + τ1μ(σ)

τ2 = t−1/2θ2,� + τ2ν(σ ) + τ1τ2β(σ)

S2 = {Px} t, θ1, θ2,� � = A(t, θ1, θ2) = α(t) + θ1μ(t)

+ θ2ν(t) + θ1θ2β(t)

S3 = {Pt } x, θ1, θ2,� � = A(x, θ1, θ2) = α(x) + θ1μ(x)

+ θ2ν(x) + θ1θ2β(x)

S4 = {Px + εPt } σ = x − εt, θ1, θ2,� � = A(σ, θ1, θ2) = α(σ) + θ1μ(σ)

+ θ2ν(σ ) + θ1θ2β(σ)

S6 = {Px + μQx} t, τ = θ1 − μx, θ2,� � = A(t, τ, θ2) = α(t) + τη(t)

+ θ2λ(t) + τθ2β(t)

S7 = {Pt + μQx} σ = x + μθ1t , � = A(σ, τ, θ2) = α(σ)

τ = θ1 − μt, θ2,� + θ2λ(σ) + τθ2β(σ)

S8 = {Px + εPt + μQx} σ = εx − t + μtθ1, � = A(σ, τ, θ2) = α(σ)

τ = θ1 − εμt, θ2,� + θ2λ(σ) + τθ2β(σ)

S10 = {Px + νQt } σ = t + νθ2x, � = A(σ, τ, θ1) = α(σ)

τ = θ2 − νx, θ1,� + θ1λ(σ) + τθ1β(σ)

S11 = {Pt + νQt } x, θ1, τ = θ2 − νt,� � = A(x, τ, θ1) = α(x) + τη(x)
+ θ1λ(x) + τθ1β(x)

S12 = {Px + εPt + νQt } σ = t − εx + νxθ2, � = A(σ, τ, θ1) = α(σ) + τη(σ )
τ = θ2 − νx, θ1,� + θ1λ(σ) + τθ1β(σ)

as a complex ordinary differential equation. Then under the transformation

α = i ln y, (64)

it becomes

yσσ = 1

y
(yσ )

2 − 1

σ
yσ +

1

4σ
(y−1 − y3)− C0

2σ 3/2
(1 − y2). (65)

In the case where C0 = 0, we can rescale the independent variable σ to z = ±2iσ and we
obtain the following form of equation (65):

yzz = 1

y
(yz)

2 − 1

z
yz ± i

8z

(
y3 − 1

y

)
. (66)

The solution of the reduced system (63) can be expressed in terms of y through the
transformation (64). Under the assumption that C0 = 0, the odd-valued functions μ and
ν have to satisfy the following differential equations:

νσσ = −
(

1

2σ
+

1 − y2

y(1 + y2)
yσ

)
νσ − 1

4σ

(
y +

1

y

)2

ν, μ = 2y

1 + y2
νσ , (67)

together with the constraint μν = 0.
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Table 5. Reduced equations obtained for subalgebras of the Lie superalgebra S spanned by the
vector fields (50).

Subalgebra Reduced equations

S1 = {L} β + sinα = 0, νσ − μ cosα = 0,

σμσ + 1
2μ + ν cosα = 0, ασ + σασσ − β cosα − μν sinα = 0

S2 = {Px} β + sinα = 0, μ cosα = 0,
μt + ν cosα = 0, β cosα + μν sinα = 0

S3 = {Pt } β + sinα = 0, νx − μ cosα = 0,
ν cosα = 0, β cosα + μν sinα = 0

S4 = {Px + εPt } β + sinα = 0, νσ − μ cosα = 0,
εμσ − ν cosα = 0, εασσ + β cosα + μν sinα = 0

S6 = {Px + μQx} β + sinα = 0, μβ − η cosα = 0,

ηt + λ cosα = 0, μηt + β cosα + ηλ sinα = 0

S7 = {Pt + μQx} β + sinα = 0, λσ − η cosα = 0,

μασ − λ cosα = 0, μησ + β cosα + ηλ sinα = 0

S8 = {Px + εPt + μQx} β + sinα = 0, ελσ − η cosα = 0,

ησ + μασ − λ cosα = 0, εασσ + μησ + β cosα + ηλ sinα = 0

S10 = {Px + νQt } β − sinα = 0, λσ + η cosα = 0,
νασ + λ cosα = 0, νησ − β cosα − ηλ sinα = 0

S11 = {Pt + νQt } β − sinα = 0, νβ + η cosα = 0,
ηx − λ cosα = 0, νηx − β cosα − ηλ sinα = 0

S12 = {Px + εPt + νQt } β − sinα = 0, λσ + η cosα = 0,
νασ + εησ + λ cosα = 0, εασσ + νησ − β cosα − ηλ sinα = 0

On the other hand, taking α = 0 in equation (63), we obtain the following particular
solution of the SSG equation:

�(x, t, θ1, θ2) =
[
D1√
x

cos (2
√
xt)− D2√

x
sin (2

√
xt)

]
θ1

+

[
D1√
t

sin (2
√
xt) +

D2√
t

cos (2
√
xt)

]
θ2 (68)

representing a nonsingular periodic solution with the damping factor t−1/2 (where t �= 0).
For the subalgebra S2 = {Px}, the reduced equations in table 5 are equivalent to the

corresponding ones obtained in component form, i.e. listed in table 2. The only nonvanishing
solutions which we obtain are

�(x, t, θ1, θ2) = kπ, (69)

where k ∈ Z and

�(x, t, θ1, θ2) = (
k + 1

2

)
π + θ1μ0 + θ2μ0ϕ(t) + (−1)k+1θ1θ2, (70)

where k ∈ Z, μ0 is an odd supernumber and ϕ is an arbitrary even-valued function of t.
Similarly, in the case of the subalgebra S3 = {Pt } the reduced equations in table 5 are

equivalent to the corresponding ones obtained in the component form in table 2. The only
nonzero solutions are

�(x, t, θ1, θ2) = kπ, (71)
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where k ∈ Z and

�(x, t, θ1, θ2) = (
k + 1

2

)
π + θ1ν0ϕ(x) + θ2ν0 + (−1)k+1θ1θ2, (72)

where k ∈ Z, ν0 is an odd supernumber and ϕ is an arbitrary even-valued function of x.
The subalgebra S4 = {Px + εPt } leads to the last reduction which was obtained also in

the component form in table 2. The reduced equations for the superfield

�(x, t, θ1, θ2) = α(σ) + θ1μ(σ) + θ2ν(σ ) + θ1θ2β(σ), (73)

where σ = x − εt, are equivalent to the following set of equations for functions α, ν, μ, β:

εασσ − 1
2 sin (2α) + K0 sinα = 0,

νσσ + tan σνσασ − ε cos2 αν = 0,

μ− 1

cosα
νσ = 0,

β + sinα = 0,

(μν)σ = 0,

(74)

where we denoted the nilpotent constant μν by K0. The resulting solutions are traveling wave
solutions in both the even and odd fields. We recall that the equation for α, namely

εασσ − 1
2 sin (2α) + K0 sinα = 0, (75)

appears in the reduction of the double sine-Gordon equation in (2 + 1) dimensions [5] but with
real K0.

Considering the different values of ε separately, in the case ε = 1,we make the substitution
α = −i ln v into equation (75) followed by an integration which leads to the equation

(vσ )
2 − 1

4 (v
4 − 4K0v

3 + 8K1v
2 − 4K0v + 1) = 0, (76)

solved by an elliptic integral in terms of a P-Weierstrass function. WhenK0 = 0, equation (75)
reduces to the reduced sine-Gordon equation and its traveling wave solutions are well known
and represent classical periodic, nonperiodic and kink solutions [39, 40]. For example, in the
special case where K0 = 0 and K1 = 0, we obtain the following particular wave solution
which is expressed in terms of Jacobi elliptic functions

α(σ) = arccos (cn(σ, i)), σ = x − t,

μ(σ ) = D1

⎡⎣(
1 − sn2(σ,i)

(1+ dn(σ,i))2
)

(
1 + sn(σ,i)

1+ dn(σ,i)
)2 +

(
1 + sn(σ,i)

1+ dn(σ,i)
)2(

1 − sn2(σ,i)

(1+ dn(σ,i))2
)
⎤⎦ ,

ν(σ ) = D1

⎡⎣−
(
1 − sn2(σ,i)

(1+ dn(σ,i))2
)

(
1 + sn(σ,i)

1+ dn(σ,i)
)2 +

(
1 + sn(σ,i)

1+ dn(σ,i)
)2(

1 − sn2(σ,i)

(1+ dn(σ,i))2
)
⎤⎦ ,

(77)

where D1 is an arbitrary odd supernumber. Physically, this represents an elliptic traveling
wave.

Another type of traveling wave solution is obtained for ε = −1. A particular explicit
solution of the reduced equations (74) takes the form

�(x, t, θ1, θ2) = arcsin (tanh σ) + θ1
D1

cosh σ
+ θ2D1 tanh σ − θ1θ2 tanh σ, (78)

where σ = x + t and D1 is an arbitrary odd supernumber. This represents a bump function in
the θ1 direction and a kink in the θ2 direction (i.e. in the corresponding odd components).
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For the cases of the subalgebras S6 = {Px + μQx} and S11 = {Pt + νQt }, the only
nonzero solution which we obtain is

�(x, t, θ1, θ2) = kπ, where k ∈ Z. (79)

For the subalgebra S7 = {Pt + μQx}, we obtain the solutions

�(x, t, θ1, θ2) = kπ, (80)

where k ∈ Z and

�(x, t, θ1, θ2) = (
k + 1

2

)
π + θ1μλ0ψ(σ) + θ2λ0 + (−1)k+1(θ1 − μt)θ2, (81)

where k ∈ Z, λ0 is an odd supernumber and ψ is an arbitrary even-valued function of
σ = x + μθ1t .

For the subalgebra S8 = {Px + εPt + μQx}, we were able to obtain an explicit solution
only if we assume that λ and η are multiples of μ. Then the equation for α does not involve
odd unknowns and can be solved in terms of elliptic functions. (We note that in this case the
reduced equations become very similar to those for S4, see table 5, but not identical—they
differ by the μασ term in ησ + μασ − λ cosα = 0.) We find

�(x, t, θ1, θ2) = α(σ) + (θ1 − εμt)η(σ ) + θ2λ(σ) + (θ1 − εμt)θ2β(σ), (82)

where σ = εx− t +μtθ1 and the even-valued function α is given in terms of the Jacobi elliptic
function

α = arcsin[k sn(
√−εσ, k)], (83)

where the modulus k is restricted by the relation |k| < 1. The latter condition ensures that the
elliptic solutions possess one real and one purely imaginary period when restricted to real σ .
The even-valued function β is given by

β = −k sn(
√−εσ, k). (84)

The odd-valued function λ is given by λ = μg(σ), where g is an even-valued function of σ
which obeys the linear ordinary differential equation

gσσ + (tanα)gσ − ε(cos2 α)g + ε(cosα)ασ = 0, (85)

and the odd-valued function η is given by η = μf (σ), where the even-valued function f is
given by

f = ε

cosα
gσ . (86)

The subalgebra S10 = {Px + νQt } leads to the solutions

�(x, t, θ1, θ2) = kπ, (87)

where k ∈ Z and

�(x, t, θ1, θ2) = (
k + 1

2

)
π + θ2νλ0ψ(σ) + θ1λ0 + (−1)k(θ2 − νx)θ1, (88)

where k ∈ Z, λ0 is an odd supernumber and ψ is an arbitrary even-valued function of σ .
For the subalgebra S12 = {Px + εPt + νQt }, we find a solution similarly as in the case of

S8. We have

�(x, t, θ1, θ2) = α(σ) + (θ2 − νx)η(σ ) + θ1λ(σ) + (θ2 − νx)θ1β(σ), (89)

where σ = t − εx + νxθ2 and the even-valued function α is given by

α = arcsin[k sn(
√−εσ, k)], (90)
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where the modulus k is restricted by the relation |k| < 1. The even-valued function β is given
by

β = k sn(
√−εσ, k). (91)

The odd-valued function λ is given by λ = νg(σ ) where g is an even-valued function of σ
which obeys the linear differential equation for g:

gσσ + (tanα)ασgσ − ε(cos2 α)g − ε(cosα)ασ = 0, (92)

and the odd-valued function η is given by η = νf (σ ) where the even-valued function f is
given by

f = − 1

cosα
gσ . (93)

Let us now turn our attention to those subalgebras whose invariants possess a non-standard
structure. Such subalgebras are distinguished by the fact that each of them admits an invariant
expressed in terms of an arbitrary function of the superspace variables, multiplied by an odd
supernumber. Such invariants are nilpotent and this causes complications in the computation.
This aspect can be illustrated by means of the following example. The subalgebra S5 = {μQx}
generates the first of the two one-parameter group transformations described in equation (4).
Its invariants are t, θ2,� and any quantity of the form

τ = μf (x, t, θ1, θ2,�), (94)

where f is an arbitrary function which can be either even or odd valued. It is an open question
as to whether or not for a particular choice of function f a substitution of these invariants into
the SSG equation (39) can lead to a reduced system of equations expressible in terms of the
invariants. It is clearly not possible for an arbitrary function f . For example, in the case when
τ = μxθ1, the system (39) transforms into the equation

μxθ2Atτ + μxAτθ2 + sinA = 0, (95)

for the field

� = A(t, τ, θ2). (96)

The presence of the variable x in equation (95) clearly demonstrates that we do not obtain a
reduced equation expressible in terms of the invariants.

On the other hand, if we attempt the reduction with respect to all the vector fields
μQx,μ ∈ 	odd, we immediately find that such vector fields do not form a subalgebra and we
have to reduce with respect to the subalgebra generated by {Qx, Px}. That leads to �(t, θ2)

and substituting into equation (39) we find the reduction

sin� = 0,

which allows again only the trivial solution

� = kπ, k ∈ Z. (97)

The other five subalgebras having non-standard invariants display similar features, and we
list below the invariants expressed in terms of an arbitrary function of the superspace variables
for each case.

Subalgebra Non-standard invariant

S9 = {νQt } νf (x, t, θ1, θ2,�)

S13 = {μQx + νQt } μνf (x, t, θ1, θ2,�)
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S14 = {Px + μQx + νQt } μνf (t, θ1, θ2,�)

S15 = {Pt + μQx + νQt } μνf (x, θ1, θ2,�)

S16 = {Px + εPt + μQx + νQt } μνf (θ1, θ2,�)

where, in each case, f is an arbitrary function of its arguments.
From a more general perspective, the problem of non-standard invariants can be expressed

as follows. We recall that the construction of invariant solutions is based on a proper (local)
choice of canonical coordinates on the space of independent and dependent coordinates such
that it ‘straightens the flow’ of the generator of the one-parametric subgroup, i.e. we get one
coordinate corresponding to the group parameter and the remaining ones are invariant with
respect to the flow. In order to perform the reduction, we have to assume that the group
parameter can be expressed as a function of original independent coordinates (i.e. the orbits of
the subgroup action are of codimension 1 in the space of independent variables). We choose
the proper number of invariant coordinates as our new dependent coordinates and interpret
them as functions of the remaining ones and the group parameter.

Once the differential equation(s) possessing the symmetry is expressed in these canonical
coordinates, due to its symmetry, we are guaranteed that the group parameter coordinate
drops out of the equation(s) and we have an equation(s) with one less independent variable.
If this(these) equation(s) is(are) still a partial differential equation(s) too difficult to tackle
directly, we can repeat the procedure and further reduce (provided of course that the reduced
equation has some symmetries).

Now the source of the problem becomes clear: in the commutative case we can always
locally straighten the flow of any nonvanishing vector field, as is well known from the
differential geometry. On the other hand, once we allow anticommuting variables, we are
not always able to find such a coordinate transformation, as we have just seen—although we
have found the proper number of invariants, the transformation is obviously non-invertible.
Therefore, we are led to the conclusion that in the case of anticommuting independent variables
not all symmetry generators allow a symmetry reduction; we have to restrict our attention only
to those which can be written as a partial derivative with respect to even coordinate in some
suitable coordinate system on the supermanifoldX×U (of course, a possibility is not excluded
that in some particular case a solution constructed out of non-standard invariants may exist—
but its existence and the consistency of the reduction is not guaranteed).

7. Conclusions

In this paper, we have performed a group-theoretical analysis of the (1 + 1)-dimensional
supersymmetric sine-Gordon model. This was accomplished using two different approaches.

In the first one, the decomposition (3) of the bosonic superfield was substituted into
the SSG equation and decomposed into a system of partial differential equations for the
component fields. Next, we focused directly on the SSG equation expressed in terms of a
bosonic superfield involving odd, anticommuting independent variables. In each case, we have
determined a Lie (super)algebra of symmetries of the supersymmetric system and classified
all of its one-dimensional subalgebras. In the case of the SSG equation (10), the superalgebra
of symmetries was computed through the use of a generalized version of the prolongation
method.

For the decomposed system (15), no odd symmetry generators were obtained and the Lie
algebra of symmetries was just a realization of the Poincaré algebra in (1 + 1) dimensions
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on the superspace. On the other hand, the Lie superalgebra of symmetries of the SSG
equation (10) is the full super-Poincaré algebra in (1 + 1) dimensions.

Through the use of the SRM, we have constructed exact analytic solutions of the SSG
equation. The reductions in the component decomposition were found to be a special subset
of reductions in superspace. Solutions included constant, algebraic, trigonometric, hyperbolic
and doubly periodic solutions in terms of Jacobi elliptic functions. In some cases, the
reductions lead to systems of coupled ordinary differential equations whose full solution is
unknown and we had to content ourselves with some particular explicit solutions or solutions
expressed in terms of an arbitrary solution of given inhomogeneous linear ordinary differential
equation (e.g. equation (92)).

In the superspace formulation, we have encountered one complication not present in the
ordinary bosonic case; namely not all generators allow the corresponding reduction. The
reason for this is that there may be no canonical coordinates on the superspace straightening
the flow of such a vector field. Presently, we do not know about any simple criteria that would
allow us to immediately identify such problematic vector fields, i.e. without computation of
invariants.

We note that the groups of symmetries found were those one could guess at the beginning
from the structure of the SSG equation. Unfortunately, that is very often the case with such
an investigation—an involved and lengthy computation is needed in order to exclude the
possibility of hidden, unexpected, symmetries but otherwise brings nothing new.

An interesting open question is whether the supersymmetries can be somehow directly
detected in the component form using the methods of symmetry analysis of differential
equations (if one does not know that the equation was constructed to be supersymmetric, of
course). That is, does supersymmetry demonstrate itself in some way e.g. as a contact or
conditional symmetry? If such a detection was possible, it might be systematically applied to
find enhanced hidden supersymmetry in some models, which would be of significant practical
importance.

Also, it would be of interest to apply the method in section 4 to other physically relevant
nonlinear supersymmetric models. For example, it should be possible to perform a similar
analysis on a model with more supersymmetries, e.g. the N = 2 supersymmetric sine-Gordon
model. Given the computational complexities involved, namely the form of the prolongations
defined by formulas (46), it seems rather necessary to use computer algebra systems to deal
with the expressions in these cases and we defer such investigation to future work.
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[25] Cartier P, DeWitt-Morette C, Ihl M and Sämann Ch 2002 Supermanifolds—application to supersymmetry

Multiple Facets of Quantization and Supersymmetry ed M Olshanetsky and A Vainshtein (River Edge, NJ:
World Scientific) pp 412–57

[26] Rogers A 1981 J. Math. Phys. 22 939
[27] Olver P J 1986 Applications of Lie Groups to Differential Equations (New York: Springer)
[28] Ayari M A, Hussin V and Winternitz P 1999 J. Math. Phys. 40 1951

Hussin V 2000 Math. Newsl. (India) 10 47
[29] Alvarez-Moraga N and Hussin V 2003 J. Phys. A: Math. Gen. 36 9479
[30] Hariton A J 2006 J. Phys. A: Math. Gen. 39 7105
[31] Grundland A M and Hariton A J 2007 J. Phys. A: Math. Theor. 40 15113
[32] Grundland A M and Hariton A J 2008 J. Math. Phys. 49 043502
[33] Patera J and Winternitz P 1977 J. Math. Phys. 18 1449
[34] Ayari M A and Hussin V 1997 Comput. Phys. Commun. 100 157
[35] Ayari M A, Ayari M I and Hussin V 1998 Comput. Phys. Commun. 115 416
[36] Berezin F A 1966 The Method of Second Quantization (New York: Academic)
[37] DeWitt B 1984 Supermanifolds (Cambridge: Cambridge University Press)
[38] Winternitz P 1993 Lie groups and solutions of nonlinear partial differential equations Integrable Systems,

Quantum Groups and Quantum Field Theories ed L A Ibort and M A Rodriguez (Dordrecht: Kluwer) p 429
[39] Grundland A M, Harnad J and Winternitz P 1982 KINAM Rev. Fis. 4 333
[40] Grundland A M, Harnad J and Winternitz P 1984 J. Math. Phys. 25 791

23


	1. Introduction
	2. Supersymmetric extension
	3. Lie symmetry properties of the supersymmetric
	4. Symmetries of the SSG equation
	5. One-dimensional subalgebras of the symmetry algebra of the SSG equation
	6. Invariant solutions of the supersymmetric sine-Gordon equation
	7. Conclusions
	Acknowledgments
	References

